

Pyndl - Naive Discriminative Learning in Python

pyndl implements Naïve Discriminative Learning (NDL) in Python. NDL is an
incremental learning algorithm grounded in the principles of discrimination
learning and motivated by animal and human learning research. Lately, NDL
has become a popular tool in language research to examine large corpora and
vocabularies, with 750,000 spoken word tokens and a vocabulary size of 52,402
word types. In contrast to previous implementations, pyndl allows for a
broader range of analysis, including non-English languages, adds further
learning rules and provides better maintainability while having the same
fast processing speed. As of today, it supports multiple research groups
in their work and led to several scientific publications.

Quickstart

Installation

First, you need to install pyndl. The easiest way to do this is using
pip [https://pip.pypa.io/en/stable/]:

pip install --user pyndl

Warning

If you are using any other operating system than Linux this process can be
more difficult. Check out Installation for more detailed installation
instruction.
However, currently we can only ensure the expected behaviour on Linux
system. Be aware that on other operating system some functionality may not
work

Naive Discriminative Learning

Naive Discriminative Learning, henceforth NDL, is an incremental learning
algorithm based on the learning rule of Rescorla and Wagner 1, which
describes the learning of direct associations between cues and outcomes.
The learning is thereby structured in events where each event consists of a
set of cues which give hints to outcomes. Outcomes can be seen as the result of
an event, where each outcome can be either present or absent. NDL is naive in
the sense that cue-outcome associations are estimated separately for each
outcome.

The Rescorla-Wagner learning rule describes how the association strength
\(\Delta V_{i}^{t}\) at time \(t\) changes over time. Time is here
described in form of learning events. For each event the association strength
is updated as

\[V_{i}^{t+1} = V_{i}^{t} + \Delta V_{i}^{t}\]

Thereby, the change in association strength \(\Delta V_{i}^{t}\) is defined
as

\[\begin{split}\Delta V_{i}^{t} =
\begin{array}{ll}
\begin{cases}
\displaystyle 0 & \: \textrm{if ABSENT}(C_{i}, t)\\ \alpha_{i}\beta_{1} \:
(\lambda - \sum_{\textrm{PRESENT}(C_{j}, t)} \: V_{j}) & \:
\textrm{if PRESENT}(C_{j}, t) \: \& \: \textrm{PRESENT}(O, t)\\
\alpha_{i}\beta_{2} \: (0 - \sum_{\textrm{PRESENT}(C_{j}, t)} \: V_{j}) & \:
\textrm{if PRESENT}(C_{j}, t) \: \& \: \textrm{ABSENT}(O, t)
\end{cases}
\end{array}\end{split}\]

with

	\(\alpha_{i}\) being the salience of the cue \(i\)

	\(\beta_{1}\) being the salience of the situation in which the outcome
occurs

	\(\beta_{2}\) being the salience of the situation in which the outcome
does not occur

	\(\lambda\) being the the maximum level of associative strength possible

Note

Usually, the parameters are set to \(\alpha_{i} = \alpha_{j} \:
\forall i, j\), \(\beta_{1} = \beta_{2}\) and \(\lambda = 1\)

Usage

Analyzing data with pyndl involves three steps

	The data has to be preprocessed into the correct format

	One of the learning methods of pyndl is used to learn the desired associations

	The learned association (commonly also called weights) can be stored or directly
be analyzed further.

In the following, a usage example of pyndl is provided, in which the first two of the
three steps are described for learning the associations between bigrams and meanings. The
first section of this example focuses on the correct preparation of the data with inbuilt
methods. However, it is worth to note that the learning algorithm itself does not require
the data to be preprocessed by pyndl, nor it is limited by that. The
pyndl.preprocess module should rather be seen as a collection of established and
commonly used preprocessing methods within the context of NDL. Custom preprocessing can
be used as long as the created event files follow the structure as outlined in the next
section. The second section, describes how the associations can be learned using pyndl,
while the last section describes how this can be exported and, for instance, loaded in R
for further investigation.

Data Preparation

To analyse any data using pyndl requires them to be in the long format as an
utf-8 encoded tab delimited gzipped text file with a header in the first line
and two columns:

	the first column contains an underscore delimited list of all cues

	the second column contains an underscore delimited list of all outcomes

	each line therefore represents an event with a pair of a cue and an outcome
(occurring one time)

	the events (lines) are ordered chronologically

The algorithm itself is agnostic to the actual domain as long as the data is tokenized
as Unicode character strings. While pyndl provides some basic preprocessing for grapheme
tokenization (see for instance the following examples), the tokenization of ideograms,
pictograms, logograms, and speech has to be implemented manually. However, generic
implementations are welcome as a contribution.

Creating Grapheme Clusters From Wide Format Data

Often data which should be analysed is not in the right format to be processed
with pyndl. To illustrate how to get the data in the right format we use data
from Baayen, Milin, Đurđević, Hendrix & Marelli 2 as an example:

	Table 1

	Word

	Frequency

	Lexical Meaning

	Number

	hand

	10

	HAND

	

	hands

	20

	HAND

	PLURAL

	land

	8

	LAND

	

	lands

	3

	LAND

	PLURAL

	and

	35

	AND

	

	sad

	18

	SAD

	

	as

	35

	AS

	

	lad

	102

	LAD

	

	lads

	54

	LAD

	PLURAL

	lass

	134

	LASS

	

Table 1 shows some words, their frequencies of occurrence and their meanings as
an artificial lexicon in the wide format. In the following, the letters
(unigrams and bigrams) of the words constitute the cues, whereas the meanings
represent the outcomes.

As the data in table 1 are artificial we can generate such a file for this
example by expanding table 1 randomly regarding the frequency of occurrence of
each event. The resulting event file lexample.tab.gz [https://github.com/quantling/pyndl/blob/main/docs/data/lexample.tab.gz]
consists of 420 lines (419 = sum of frequencies + 1 header) and looks like the
following (nevertheless you are encouraged to take a closer look at this file
using any text editor of your choice):

	Cues

	Outcomes

	#h_ha_an_nd_ds_s#

	hand_plural

	#l_la_ad_d#

	lad

	#l_la_as_ss_s#

	lass

Creating Grapheme Clusters From Corpus Data

Often the corpus which should be analysed is only a raw utf-8 encoded text file
that contains huge amounts of text. From here on we will refer to such a file
as a corpus file. In the corpus files several documents can be stored with a
---end.of.document--- or ---END.OF.DOCUMENT--- string marking
where an old document finished and a new document starts.

The pyndl.preprocess module (besides other things)
provides the functionality to directly generate an event file based on a raw
corpus file and filter it:

>>> from pyndl import preprocess
>>> preprocess.create_event_file(corpus_file='docs/data/lcorpus.txt',
... event_file='docs/data/levent.tab.gz',
... allowed_symbols='a-zA-Z',
... context_structure='document',
... event_structure='consecutive_words',
... event_options=(1,),
... cue_structure='bigrams_to_word')

Here we use the example corpus lcorpus.txt [https://github.com/quantling/pyndl/blob/main/docs/data/lcorpus.txt] to
produce an event file levent.tab.gz which (uncompressed) looks like this:

	Cues

	Outcomes

	an_#h_ha_d#_nd

	hand

	ot_fo_oo_#f_t#

	foot

	ds_s#_an_#h_ha_nd

	hands

Note

pyndl.corpus allows you to generate such a corpus file from a
bunch of gunzipped xml subtitle files filled with words.

Learn the associations

The strength of the associations for the data can now easily be computed using
the pyndl.ndl.ndl function from the pyndl.ndl module:

>>> from pyndl import ndl
>>> weights = ndl.ndl(events='docs/data/levent.tab.gz',
... alpha=0.1, betas=(0.1, 0.1), method="threading")

Save and load a weight matrix

To save time in the future, we recommend saving the weights. For compatibility
reasons we recommend saving the weight matrix in the netCDF format 3:

>>> weights.to_netcdf('docs/data/weights.nc')

Now, the saved weights can later be reused or be analysed in Python or R. In
Python the weights can simply be loaded with the xarray module [http://xarray.pydata.org/en/stable/]:

>>> import xarray
>>> with xarray.open_dataarray('docs/data/weights.nc') as weights_read:
... weights_read

In R you need the ncdf4 package [https://cran.r-project.org/package=ncdf4]
to load a in netCDF format saved matrix:

> #install.packages("ncdf4") # uncomment to install
> library(ncdf4)
> weights_nc <- nc_open(filename = "docs/data/weights.nc")
> weights_read <- t(as.matrix(ncvar_get(nc = weights_nc, varid = "__xarray_dataarray_variable__")))
> rownames(weights_read) <- ncvar_get(nc = weights_nc, varid = "outcomes")
> colnames(weights_read) <- ncvar_get(nc = weights_nc, varid = "cues")
> nc_close(nc = weights_nc)
> rm(weights_nc)

Clean up

In order to keep everything clean we might want to remove all the files we
created in this tutorial:

>>> import os
>>> os.remove('docs/data/levent.tab.gz')

	1

	Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforcement and
non-reinforcement. Classical conditioning II: Current research and
theory, 2, 64-99.

	2

	Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M.
(2011). An amorphous model for morphological processing in visual
comprehension based on naive discriminative learning.
Psychological review, 118(3), 438.

	3

	Unidata (2012). NetCDF. doi:10.5065/D6H70CW6. Retrieved from
http://doi.org/10.5065/D6RN35XM)

Installation

Supported systems and versions

[image: _images/main.svg]
 [https://travis-ci.org/quantling/pyndl?branch=main][image: _images/pyndl3.svg]
 [https://pypi.python.org/pypi/pyndl/]pyndl currently is only tested and mainly used on 64-bit Linux systems.
However, it is possible to install it on other operating systems, but be aware
that some functionality might not work or will not work as intended. Therefore
be extra careful and run the test suite after installing it on a non Linux
system.

Note

If you face problems with installing pyndl with pip, it might be
helpful to use Minicoda [https://conda.io/miniconda.html] to install the
following dependencies:

conda install numpy cython pandas xarray netCDF4 numpydoc pip

The reason behind this is that during the installation process of pyndl
Cython extension need to be installed, if no pre-compiled wheel could be
found for your operating system and architecture. To compile Cython
extensions some further steps need to be done, which is described in the
Cython documentation [https://cython.readthedocs.io] . These steps depend
on your operating system. Installing Cython with conda install cython
should add all the necessary additional programs and files and no further
steps are needed.

Linux

If you want to install pyndl on Linux the easiest way is to install it
from pypi [https://pypi.python.org/pypi] with:

pip install --user pyndl

MacOS

If you want to install pyndl on MacOS you can also install it from
pypi [https://pypi.python.org/pypi]. However, the installation will not have
openmp support. Sometimes an error is shown during the installation, but the
installations succeeds nonetheless. Before filing a bug report please check if
you can run the examples from the documentation.

Install pyndl with:

pip install --user pyndl

Windows 10

Note

You might need to enable the bash within Windows 10 first to be able to
follow the following instructions.

After installing Anaconda or Miniconda, first install the dependencies with the
conda command in the bash or the Miniconda terminal:

conda update conda
conda install numpy cython pandas xarray netCDF4 numpydoc pip

After the installation of the dependencies finished successfully you should be
able to install pyndl with pip:

pip install --user pyndl

Warning

This procedure is experimental and might not work. As long as we do not
actively support Windows 10 be aware that these installation instructions
can fail or the installed package does not always works as intended!

Background

Naive Discriminative Learning

Terminology

Before explaining Naive Discriminative Learning (NDL) in detail, we want to
give you a brief overview over important notions:

	cue :
	A cue is something that gives a hint on something else. The something else
is called outcome. Examples for cues in a text corpus are trigraphs or
preceding words for the word or meaning of the word.

	outcome :
	The outcome is the result of an event. Examples are words, the meaning of
the word, or lexomes.

	event :
	An event connects cues with outcomes. In any event one or more unordered
cues are present and one or more outcomes are present.

	weights :
	The weights represent the learned experience / association between all cues
and outcomes of interest. Usually, some meta data is stored alongside the
learned weights.

Rescorla Wagner learning rule

In order to update the association strengths (weights) between cues and
outcomes we do for each event the following:

We calculate the activation (prediction) \(a_j\) for each outcome
\(o_j\) by using all present cues \(C_\text{PRESENT}\):

\[a_j = \sum_{i \text{ for } c_i \in C_\text{PRESENT}} w_{ij}\]

After that, we calculate the update \(\Delta w_{ij}\) for every
cue-outcome-combination:

\[\begin{split}\Delta w_{ij}
\begin{cases}
 0 & \text{if cue } c_i \text{ is absent}\\
 \alpha_i \beta_1 \cdot (\lambda - a_j) & \text{if outcome } o_j \text{ and cue } c_i \text{ is present.}\\
 \alpha_i \beta_2 \cdot (0 - a_j) & \text{if outcome } o_j \text{ is absent and cue } c_i \text{ is present.}
\end{cases}\end{split}\]

In the end, we update all weights according to \(w_{ij} = w_{ij} + \Delta
w_{ij}\).

Note

If we set all the \(\alpha\)’s and \(\beta\)’s to a fixed value we
can replace them in the equation with a general learning parameter
\(\eta = \alpha \cdot \beta\).

In matrix notation

We can rewrite the Rescorla-Wagner learning rule into matrix notation with a
binary cue (input) vector \(\vec{c}\), which is one for each cue present in
the event and zero for all other cues. Respectively, we define a binary outcome
(output) vector \(\vec{o}\), which is one for each outcome present in the
event and zero if the outcome is not present. In order to stick close to the
definition above we can define the activation vector as \(\vec{a} = W^T
\vec{c}\). Here \(W^T\) denotes the transposed matrix of the weight matrix
\(W\).

For simplicity let us assume we have a fixed learning rate \(\eta = \alpha
\beta\). We will relax this simplification in the end. We can rewrite the above
rule as:

\[\begin{split}\Delta &= \eta \vec{c} \cdot (\lambda \vec{o} - \vec{a})^T \\
&= \eta \vec{c} \cdot (\lambda \vec{o} - W^T \cdot \vec{c})^T\end{split}\]

Let us first check the dimensionality of the matrices:

\(\Delta\) is the update of the weight matrix \(W\) and therefore needs
to have the same dimensions \(n \times m\) where \(n\) denotes the
number of cues (inputs) and \(m\) denotes the number of outcomes (outputs).

The cue vector \(\vec{c}\) can be seen as a matrix with dimensions \(n
\times 1\) and the outcome vector can be seen as a matrix with dimensions
\(m \times 1\). Let us tabulate the dimensions:

	\(\lambda \vec{o}\)

	\(m \times 1\)

	\(W^T\)

	\(m \times n\)

	\(\vec{c}\)

	\(n \times 1\)

	\(W^T \cdot \vec{c}\)

	\(m \times 1 = (m \times n) \cdot (n \times 1)\)

	\(\lambda \vec{o} - W^T \cdot \vec{c}\)

	\(m \times 1 = (m \times 1) - (m \times 1)\)

	\((\lambda \vec{o} - W^T \cdot \vec{c})^T\)

	\(1 \times m = (m \times 1)^T\)

	\(\eta \vec{c} \cdot (\lambda \vec{o} - W^T \cdot \vec{c})\)

	\(n \times m = (n \times 1) \cdot (1 \times n)\)

We therefore end with the right set of dimensions. We now can try to simplify /
rewrite the equation.

\[\begin{split}\Delta &= \eta \vec{c} \cdot ((\lambda \vec{o})^T - (W^T \cdot \vec{c})^T) \\
&= \eta \vec{c} \cdot (\lambda \vec{o}^T - \vec{c}^T \cdot W) \\
&= \eta \lambda \vec{c} \cdot \vec{o}^T - \eta \vec{c} \cdot \vec{c}^T \cdot W \\\end{split}\]

If we now look at the full update:

\[\begin{split}W_{t + 1} &= W_t + \Delta_t \\
&= W + \Delta \\
&= W + \eta \lambda \vec{c} \cdot \vec{o}^T - \eta \vec{c} \cdot \vec{c}^T
\cdot W \\
&= \eta \lambda \vec{c} \cdot \vec{o}^T + W - \eta \vec{c} \cdot \vec{c}^T
\cdot W \\
&= \eta \lambda \vec{c} \cdot \vec{o}^T + (1 - \eta \vec{c} \cdot \vec{c}^T)
\cdot W \\\end{split}\]

We therefore see that the Rescorla-Wagner update is an affine (linear)
transformation 1 in the weights \(W\) with an
intercept of \(\eta
\lambda \vec{c} \cdot \vec{o}^T\) and a slope of \((1 - \eta \vec{c} \cdot
\vec{c}^T)\).

In index notation we can write:

\[\begin{split}W^{t + 1} &= W^{t} + \eta \vec{c} \cdot (\lambda \vec{o}^T - \vec{c}^T \cdot W) \\
W^{t + 1}_{ij} &= W^{t}_{ij} + \eta c_i (\lambda o_j - \sum_k c_k W_{kj}) \\\end{split}\]

Note

Properties of the transpose 4 with \(A\) and \(B\)
matrices and \(\alpha\) skalar:

\[(A^T)^T = A\]

\[(A + B)^T = A^T + B^T\]

\[(\alpha A)^T = \alpha A^T\]

\[(A \cdot B)^T = B^T \cdot A^T\]

Other Learning Algorithms

The delta rule 2 is a gradient descent learning rule for updating the weights
of the inputs to artificial neurons in a single-layer neural network. It is
a special case of the more general backpropagation algorithm 3.

The delta rule can be expressed as:

\[\Delta_{ij} = \alpha (t_j - y_j) \partial_{h_j} g(h_j) x_i\]

In the terminology above we can identify the actual output with \(y_j =
g(h_j) = g\left(\sum_i w_{ij} c_i\right)\), the cues with \(x_i = c_i\), under the
assumption that \(o_j\) is binary (i. e. either zero or one) we can write
\(t_j = \lambda o_j\), the learning rate \(\alpha = \eta = \alpha
\beta\). Substituting this equalities results in:

\[\Delta_{ij} = \eta (\lambda o_j - g\left(\sum_i w_{ij} c_i\right)) \partial_{h_j} g(h_j) c_i\]

In order to end with the Rescorla-Wagner learning rule we need to set the
neuron’s activation function \(g(h_j)\) to the identity function, i. e.
\(g(h_j) = 1 \cdot h_j + 0 = h_j = \sum_i w_{ij} c_i\). The derivative in respect
to \(h_j\) is \(\partial_{h_j} g(h_j) = 1\) for any input \(h_j\).

We now have:

\[\begin{split}\Delta_{ij} &= \eta (\lambda o_j - \sum_i w_{ij} c_i) \cdot 1 \cdot c_i \\
&= \eta (\lambda o_j - \sum_i w_{ij} c_i) c_i \\
&= \eta c_i (\lambda o_j - \sum_i w_{ij} c_i)\end{split}\]

Assuming the cue vector is binary the vector \(c_i\) effectively filters
those updates of the present cues and sets all updates of the cues that are not
present to zero. Additionally, we can rewrite the equation above into vector
notation (without indices):

\[\begin{split}\Delta_{ij} &= \eta c_i (\lambda o_j - \sum_i w_{ij} c_i) \\
&= \eta c_i (\lambda o_j - \sum_i w_{ij} c_i)\end{split}\]

\[\Delta = \eta \vec{c} \cdot (\lambda \vec{o}^T - W^T \cdot \vec{c})^T\]

This is exactly the form of the Rescorla-Wagner rule rewritten in matrix
notation.

Conclusion

In conclusion, the Rescorla-Wagner learning rule, which only allows for one
\(\alpha\) and one \(\beta\) and therefore one learning rate
\(\eta = \alpha \beta\) is exactly the same as a single layer
backpropagation gradient decent method (the delta rule) where the neuron’s
activation function \(g(h_j)\) is set to the identity \(g(h_j) =
h_j\) and the inputs \(x_i = c_i\) and target outputs \(t_j =
\lambda o_j\) to be binary.

References

	1

	https://en.wikipedia.org/wiki/Affine_transformation

	2

	https://en.wikipedia.org/wiki/Delta_rule

	3

	https://en.wikipedia.org/wiki/Backpropagation

	4

	https://en.wikipedia.org/wiki/Transpose

Usage Examples

Lexical example

The lexical example illustrates the Rescorla-Wagner equations 1.
This example is taken from Baayen, Milin, Đurđević, Hendrix and Marelli 2.

Premises

	Cues are associated with outcomes and both can be present or absent

	Cues are segment (letter) unigrams, bigrams, …

	Outcomes are meanings (word meanings, inflectional meanings, affixal
meanings), …

	\(\textrm{PRESENT}(X, t)\) denotes the presence of cue or outcome
\(X\) at time \(t\)

	\(\textrm{ABSENT}(X, t)\) denotes the absence of cue or outcome
\(X\) at time \(t\)

	The association strength \(V_{i}^{t+1}\) of cue \(C_{i}\) with
outcome \(O\) at time \(t+1\) is defined as \(V_{i}^{t+1} =
V_{i}^{t} + \Delta V_{i}^{t}\)

	The change in association strength \(\Delta V_{i}^{t}\) is defined as
in (1) with

	\(\alpha_{i}\) being the salience of the cue \(i\)

	\(\beta_{1}\) being the salience of the situation in which the outcome occurs

	\(\beta_{2}\) being the salience of the situation in which the outcome does not occur

	\(\lambda\) being the the maximum level of associative strength possible

	Default settings for the parameters are: \(\alpha_{i} = \alpha_{j} \:
\forall i, j\), \(\beta_{1} = \beta_{2}\) and \(\lambda = 1\)

(1)\[\begin{split}\Delta V_{i}^{t} =
\begin{array}{ll}
\begin{cases}
\displaystyle 0 & \: \textrm{if ABSENT}(C_{i}, t)\\ \alpha_{i}\beta_{1} \: (\lambda - \sum_{\textrm{PRESENT}(C_{j}, t)} \: V_{j}) & \: \textrm{if PRESENT}(C_{j}, t) \: \& \: \textrm{PRESENT}(O, t)\\ \alpha_{i}\beta_{2} \: (0 - \sum_{\textrm{PRESENT}(C_{j}, t)} \: V_{j}) & \: \textrm{if PRESENT}(C_{j}, t) \: \& \: \textrm{ABSENT}(O, t)
\end{cases}
\end{array}\end{split}\]

See comparison_of_algorithms for alternative formulations of the
Rescorla Wagner learning rule.

Data

	Table 1

	Word

	Frequency

	Lexical Meaning

	Number

	hand

	10

	HAND

	

	hands

	20

	HAND

	PLURAL

	land

	8

	LAND

	

	lands

	3

	LAND

	PLURAL

	and

	35

	AND

	

	sad

	18

	SAD

	

	as

	35

	AS

	

	lad

	102

	LAD

	

	lads

	54

	LAD

	PLURAL

	lass

	134

	LASS

	

Table 1 shows some words, their frequencies of occurrence and their meanings as
an artificial lexicon in the wide format. In the following, the letters
(unigrams and bigrams) of the words constitute the cues, the meanings represent
the outcomes.

Analyzing any data using pyndl requires them to be in the long format as an
utf-8 encoded tab delimited gzipped text file with a header in the first line
and two columns:

	the first column contains an underscore delimited list of all cues

	the second column contains an underscore delimited list of all outcomes

	each line therefore represents an event with a pair of a cue and an outcome
(occurring one time)

	the events (lines) are ordered chronologically

As the data in table 1 are artificial we can generate such a file for this
example by expanding table 1 randomly regarding the frequency of occurrence of
each event. The resulting event file lexample.tab.gz [https://github.com/quantling/pyndl/blob/main/docs/data/lexample.tab.gz] consists of 420 lines
(419 = sum of frequencies + 1 header) and looks like the following
(nevertheless you are encouraged to take a closer look at this file using any
text editor of your choice):

	Cues

	Outcomes

	#h_ha_an_nd_ds_s#

	hand_plural

	#l_la_ad_d#

	lad

	#l_la_as_ss_s#

	lass

pyndl.ndl module

We can now compute the strength of associations (weights or weight matrix)
after the presentation of the 419 tokens of the 10 words using
pyndl.ndl. pyndl.ndl provides the two functions
pyndl.ndl.ndl and pyndl.ndl.dict_ndl to calculate the
weights for all outcomes over all events. pyndl.ndl.ndl itself
provides to methods regarding estimation, openmp and threading. We have
to specify the path of our event file lexample.tab.gz [https://github.com/quantling/pyndl/blob/main/docs/data/lexample.tab.gz] and
for this example set \(\alpha = 0.1\), \(\beta_{1} = 0.1\),
\(\beta_{2} = 0.1\) with leaving \(\lambda = 1.0\) at its default
value. You can use pyndl directly in a Python3 Shell or you can write an
executable script, this is up to you. For educational purposes we use a Python3
Shell in this example.

pyndl.ndl.ndl

pyndl.ndl.ndl is a parallel Python implementation using numpy,
multithreading and a binary format which is created automatically. It allows
you to choose between the two methods openmp and threading, with the
former one using openMP [http://www.openmp.org/] and therefore being
expected to be faster when analyzing larger data. Unfortunately, openmp is
only available on Linux right now, therefore all examples use threading.
Besides, you can set three technical arguments which we will not change here:

	n_jobs (int) giving the number of threads in which the job
should be executed (default=2)

	sequence (int) giving the length of sublists generated from all outcomes
(default=10)

	remove_duplicates (logical) to make cues and outcomes unique
(default=None; which will raise an error if the same cue is present multiple
times in the same event)

Let’s start:

>>> from pyndl import ndl
>>> weights = ndl.ndl(events='docs/data/lexample.tab.gz', alpha=0.1,
... betas=(0.1, 0.1), method='threading')
>>> weights
<xarray.DataArray (outcomes: 8, cues: 15)>
...

weights is an xarray.DataArray of dimension len(outcomes),
len(cues). Our unique, chronologically ordered outcomes are ‘hand’,
‘plural’, ‘lass’, ‘lad’, ‘land’, ‘as’, ‘sad’, ‘and’. Our unique,
chronologically ordered cues are ‘#h’, ‘ha’, ‘an’, ‘nd’, ‘ds’, ‘s#’, ‘#l’,
‘la’, ‘as’, ‘ss’, ‘ad’, ‘d#’, ‘#a’, ‘#s’, ‘sa’. Therefore all three indexing
methods

>>> weights[1, 5]
<xarray.DataArray ()>
...
>>> weights.loc[{'outcomes': 'plural', 'cues': 's#'}]
<xarray.DataArray ()>
array(0.076988...)
Coordinates:
 outcomes <U6 'plural'
 cues <U2 's#'
...
>>> weights.loc['plural'].loc['s#']
<xarray.DataArray ()>
array(0.076988...)
Coordinates:
 outcomes <U6 'plural'
 cues <U2 's#'
...

return the weight of the cue ‘s#’ (the unigram ‘s’ being the word-final) for
the outcome ‘plural’ (remember counting in Python does start at 0) as ca. 0.077
and hence indicate ‘s#’ being a marker for plurality.

pyndl.ndl.ndl also allows you to continue learning from a previous
weight matrix by specifying the weight argument:

>>> weights2 = ndl.ndl(events='docs/data/lexample.tab.gz', alpha=0.1,
... betas=(0.1, 0.1), method='threading', weights=weights)
>>> weights2
<xarray.DataArray (outcomes: 8, cues: 15)>
array([[0.24...
...
...]])
Coordinates:
 * outcomes (outcomes) <U6 'hand' 'plural'...
 * cues (cues) <U2 '#h' 'ha' 'an' 'nd'...
Attributes:...
 date:...
 event_path:...
...

As you may have noticed already, pyndl.ndl.ndl provides you with meta
data organized in a dict which was collected during your calculations. Each
entry of each list of this meta data therefore references one specific
moment of your calculations:

>>> print('Attributes: ' + str(weights2.attrs))
Attributes: ...

pyndl.ndl.dict_ndl

pyndl.ndl.dict_ndl is a pure Python implementation, however, it
differs from pyndl.ndl.ndl regarding the following:

	there are only two technical arguments: remove_duplicates (logical) and
make_data_array (logical)

	by default, no longer an xarray.DataArray is returned but a dict of dicts

	however, you are still able to get an xarray.DataArray by setting
make_data_array=True

	the case \(\alpha_{i} \neq \alpha_{j} \:\) can be handled by specifying
a dict consisting of the cues as keys and corresponding \(\alpha\)’s

Therefore

>>> weights = ndl.dict_ndl(events='docs/data/lexample.tab.gz',
... alphas=0.1, betas=(0.1, 0.1))
>>> weights['plural']['s#'] # doctes: +ELLIPSIS
0.076988227...

yields approximately the same results as before, however, you now can specify
different \(\alpha\)’s per cue and as in pyndl.ndl.ndl continue
learning or do both:

>>> alphas_cues = dict(zip(['#h', 'ha', 'an', 'nd', 'ds', 's#', '#l', 'la', 'as', 'ss', 'ad', 'd#', '#a', '#s', 'sa'],
... [0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3, 0.1, 0.2, 0.1, 0.2, 0.1, 0.3, 0.1, 0.2]))
>>> weights = ndl.dict_ndl(events='docs/data/lexample.tab.gz',
... alphas=alphas_cues, betas=(0.1, 0.1))
>>> weights2 = ndl.dict_ndl(events='docs/data/lexample.tab.gz',
... alphas=alphas_cues, betas=(0.1, 0.1),
... weights=weights)

If you prefer to get a xarray.DataArray returned you can set the flag make_data_array=True:

>>> weights = ndl.dict_ndl(events='docs/data/lexample.tab.gz',
... alphas=alphas_cues, betas=(0.1, 0.1),
... make_data_array=True)
>>> weights
<xarray.DataArray (outcomes: 8, cues: 15)>
...

A minimal workflow example

As you should have a basic understanding of pyndl.ndl by now, the
following example will show you how to:

	generate an event file based on a raw corpus file

	count cues and outcomes

	filter the events

	learn the weights as already shown in the lexical learning example

	save and load a weight matrix (netCDF format)

	load a weight matrix (netCDF format) into R for further analyses

Generate an event file based on a raw corpus file

Suppose you have a raw utf-8 encoded corpus file (by the way,
pyndl.corpus allows you to generate such a corpus file from a bunch of
gunzipped xml subtitle files filled with words, which we will not cover here).
For example take a look at lcorpus.txt_.

To analyse the data, you need to convert the file into an event file similar to
lexample.tab.gz [https://github.com/quantling/pyndl/blob/main/docs/data/lexample.tab.gz] in our lexical learning example, as currently there is only
one word per line and neither is there the column for cues nor for outcomes:

hand
foot
hands

The pyndl.preprocess module (besides other things) allows you to
generate an event file based on a raw corpus file and filter it:

>>> import pyndl
>>> from pyndl import preprocess
>>> preprocess.create_event_file(corpus_file='docs/data/lcorpus.txt',
... event_file='docs/data/levent.tab.gz',
... allowed_symbols='a-zA-Z',
... context_structure='document',
... event_structure='consecutive_words',
... event_options=(1,),
... cue_structure='bigrams_to_word')

The function pyndl.preprocess.create_event_file has several arguments
which you might have to change to suit them your data, so you are strongly
recommended to read its documentation. We set context_structure='document'
as in this case the context is the whole document,
event_structure='consecutive_words' as these are our events,
event_options=(1,) as we define an event to be one word and
cue_structure='bigrams_to_word' to set cues being bigrams.
There are also several technical arguments you can specify, which we will not
change here. Our generated event file levent.tab.gz now looks
(uncompressed) like this:

	Cues

	Outcomes

	an_#h_ha_d#_nd

	hand

	ot_fo_oo_#f_t#

	foot

	ds_s#_an_#h_ha_nd

	hands

Count cues and outcomes

We can now count the cues and outcomes in our event file using the
pyndl.count module and also generate id maps for cues and outcomes:

>>> from pyndl import count
>>> freq, cue_freq_map, outcome_freq_map = count.cues_outcomes(event_file_name='docs/data/levent.tab.gz')
>>> freq
12
>>> cue_freq_map
Counter({...})
>>> outcome_freq_map
Counter({...})
>>> cues = list(cue_freq_map.keys())
>>> cues.sort()
>>> cue_id_map = {cue: ii for ii, cue in enumerate(cues)}
>>> cue_id_map
{...}
>>> outcomes = list(outcome_freq_map.keys())
>>> outcomes.sort()
>>> outcome_id_map = {outcome: nn for nn, outcome in enumerate(outcomes)}
>>> outcome_id_map
{...}

Filter the events

As we do not want to include the outcomes ‘foot’ and ‘feet’ in this example
as well as their cues ‘#f’, ‘fo’ ‘oo’, ‘ot’, ‘t#’, ‘fe’, ‘ee’ ‘et’, we use the
pyndl.preprocess module again, filtering our event file and update
the id maps for cues and outcomes:

>>> preprocess.filter_event_file(input_event_file='docs/data/levent.tab.gz',
... output_event_file='docs/data/levent.tab.gz.filtered',
... remove_cues=('#f', 'fo', 'oo', 'ot', 't#', 'fe', 'ee', 'et'),
... remove_outcomes=('foot', 'feet'))
>>> freq, cue_freq_map, outcome_freq_map = count.cues_outcomes(event_file_name='docs/data/levent.tab.gz.filtered')
>>> cues = list(cue_freq_map.keys())
>>> cues.sort()
>>> cue_id_map = {cue: ii for ii, cue in enumerate(cues)}
>>> cue_id_map
{...}
>>> outcomes = list(outcome_freq_map.keys())
>>> outcomes.sort()
>>> outcome_id_map = {outcome: nn for nn, outcome in enumerate(outcomes)}
>>> outcome_id_map
{...}

Alternatively, using pyndl.preprocess.filter_event_file you can also
specify which cues and outcomes to keep (keep_cues and keep_outcomes)
or remap cues and outcomes (cue_map and outcomes_map). Besides, there
are also some technical arguments you can specify, which will not discuss here.

Last but not least pyndl.preprocess does provide some other very
useful functions regarding preprocessing of which we did not make any use here,
so make sure to go through its documentation.

Learn the weights

Computing the strength of associations for the data is now easy, using for
example pyndl.ndl.ndl from the pyndl.ndl module like in the lexical learning
example:

>>> from pyndl import ndl
>>> weights = ndl.ndl(events='docs/data/levent.tab.gz.filtered',
... alpha=0.1, betas=(0.1, 0.1), method="threading")

Save and load a weight matrix

is straight forward using the netCDF format 3

>>> import xarray
>>> weights.to_netcdf('docs/data/weights.nc')
>>> with xarray.open_dataarray('docs/data/weights.nc') as weights_read:
... weights_read

In order to keep everything clean we might want to remove all the files we
created in this tutorial:

>>> import os
>>> os.remove('docs/data/levent.tab.gz')
>>> os.remove('docs/data/levent.tab.gz.filtered')

Widrow-Hoff (WH) learning

There is a Widrow-Hoff learning module called wh now in pyndl, which uses
the same event files and nearly the same function parameters as the ndl.ndl
function. The main function to call is wh.wh. Compared to ndl.ndl the
wh.wh function adds two look-up tables, one for cues and one for outcomes, to
its keyword arguments. Each of this look-up tables maps each cue and / or
outcome in your event file to a vector. This look-up table has to be an
instance xarray.DataArray and is passed with the keyword argument
cue_vectors or outcome_vectors. The second dimension of the look-up table
needs to be named cue_vector_dimensions and outcome_vector_dimensions
respectively. For more information have a look at the function doc string.

WH example

This example shows that WH learning mimics RW learning, if the cue and outcome
vectors are containing unit vectors. Note that WH learning in contrast to the RW
learning only has one learning parameter, which is called eta. The assumption
is that beta1 equals beta2.

>>> from pyndl import wh, ndl
>>> import xarray as xr
>>> import numpy as np
>>> events = 'docs/data/event_file_wh.tab.gz'
>>> eta = 0.01 # learning rate
>>> cue_vectors = xr.DataArray(np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=float),
... dims=('cues', 'cue_vector_dimensions'),
... coords={'cues': ['a', 'b', 'c'], 'cue_vector_dimensions': ['dim1', 'dim2', 'dim3']})
>>> outcome_vectors = xr.DataArray(np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float),
... dims=('outcomes', 'outcome_vector_dimensions'),
... coords={'outcomes': ['A', 'B', 'C', 'D'],
... 'outcome_vector_dimensions': ['dim1', 'dim2', 'dim3', 'dim4']})
>>> weights_wh = wh.wh(events, eta, cue_vectors=cue_vectors, outcome_vectors=outcome_vectors, method='numpy')
>>> weights_ndl = ndl.ndl(events, alpha=1.0, betas=(eta, eta), method='threading')

The weights returned by wh.wh have dimensions outcome_vector_dimensions and
cue_vector_dimensions. Therefore, a direct comparison is not possible. But
as the vectors used are unit vectors the first cue_vector_dimension “dim1”
corresponds to the first cue “a” and the second vector dimension corresponds
to the second cue etc. If the dimensions are ordered by their names, the equality
gets apparent.

>>> weights_wh = weights_wh.loc[{'outcome_vector_dimensions': ['dim1', 'dim2', 'dim3', 'dim4'],
... 'cue_vector_dimensions': ['dim1', 'dim2', 'dim3']}]
>>> weights_ndl = weights_ndl.loc[{'outcomes': ['A', 'B', 'C', 'D'], 'cues': ['a', 'b', 'c']}]
>>> print(weights_wh)
<xarray.DataArray (outcome_vector_dimensions: 4, cue_vector_dimensions: 3)>
array([[0.06706..., 0. , 0.],
 [0. , 0.03940..., 0.],
 [0.0094... , 0. , 0.03940...],
 [0.01 , 0. , 0.]])
Coordinates:
 * outcome_vector_dimensions (outcome_vector_dimensions) <U4 'dim1' ... 'dim4'
 * cue_vector_dimensions (cue_vector_dimensions) <U4 'dim1' 'dim2' 'dim3'
 outcomes <U1 'A'
 cues <U1 'a'
Attributes: (12/15)
...
>>> print(weights_ndl)
<xarray.DataArray (outcomes: 4, cues: 3)>
array([[0.06706..., 0. , 0.],
 [0. , 0.03940..., 0.],
 [0.0094... , 0. , 0.03940...],
 [0.01 , 0. , 0.]])
Coordinates:
 * outcomes (outcomes) <U1 'A' 'B' 'C' 'D'
 * cues (cues) <U1 'a' 'b' 'c'
Attributes: (12/17)
...

Furthermore, it is possible to only use either cue_vectors or
outcome_vectors. This functionality is Linux only at the moment.

>>> weights_wh_cv_only = wh.wh(events, eta, cue_vectors=cue_vectors, method='openmp')
>>> weights_wh_ov_only = wh.wh(events, eta, outcome_vectors=outcome_vectors, method='openmp')

For this example the content of the resulting weights matches the content of
the weights_wh and weights_ndl.

Load a weight matrix to R 4

We can load a in netCDF format saved matrix into R:

> #install.packages("ncdf4") # uncomment to install
> library(ncdf4)
> weights_nc <- nc_open(filename = "docs/data/weights.nc")
> weights_read <- t(as.matrix(ncvar_get(nc = weights_nc, varid = "__xarray_dataarray_variable__")))
> rownames(weights_read) <- ncvar_get(nc = weights_nc, varid = "outcomes")
> colnames(weights_read) <- ncvar_get(nc = weights_nc, varid = "cues")
> nc_close(nc = weights_nc)
> rm(weights_nc)

	1

	Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforcement and
non-reinforcement. Classical conditioning II: Current research and
theory, 2, 64-99.

	2

	Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M.
(2011). An amorphous model for morphological processing in visual
comprehension based on naive discriminative learning.
Psychological review, 118(3), 438.

	3

	Unidata (2012). NetCDF. doi:10.5065/D6H70CW6. Retrieved from
http://doi.org/10.5065/D6RN35XM)

	4

	R Core Team (2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

Benchmark

Here we compare the performance of Naive Discrimination Learning in pyndl
with other implementations, namely from the R packages ndl and ndl2.

This document summarizes the benchmarking procedure and results; the code to run
these is available in the repository’s benchmark folder [https://github.com/quantling/pyndl/tree/main/benchmark].

Creating the event files

The benchmark datasets are trigram-to-word events on the text of the
German Graphem Wikipedia page, that can be generated with python preprocessing.py.

Cues: ['aph', 'em#', 'hem', 'gra', 'rap', '#gr', 'phe'], Outcome: ['graphem']
Cues: ['aus', '#au', 'us#'], Outcome: ['aus']
Cues: ['wik', '#wi', 'kip', 'iki', 'edi', 'ia#', 'ped', 'ipe', 'dia'], Outcome: ['wikipedia']
…
Cues: ['ქარ', '#ქა', 'ართ', 'ლი#', 'რთუ', 'თულ', 'ული'], Outcome: ['ქართული']
Cues: ['ша#', 'қша', 'ақш', '#қа', 'зақ', 'қаз', 'аза'], Outcome: ['қазақша']
Cues: ['#한국', '한국어', '국어#'], Outcome: ['한국어']
…

The text contains some non-ASCII characters from various languages.
While this is not a problem with pyndl, these characters would crash ndl2.
This is why create cue-outcome events with a basic preprocessing,
including just ASCII characters and letters.
Please note, that in research applications we recommend using dedicated software for more careful
preprocessing.

preprocess.create_event_file(corpus_file=txt_file,
 event_file=ascii_event_file,
 allowed_symbols='a-zA-Z0-9',
 context_structure='document',
 event_structure='consecutive_words',
 event_options=(1,), # number of words,
 cue_structure="trigrams_to_word",
 lower_case=True,
 remove_duplicates=True)

Based on this event file,
we construct large scale event file by concatenating all events multiple times.

ascii_events = list(io.events_from_file(ascii_event_file))
io.events_to_file(ascii_events * times, event_dir / f"{times}_times_{ascii_event_file.name}", compatible=True)

Running pyndl

Our benchmark compares the runtime of pyndl’s NDL implementations on event files of varying size.
The naive dict_ndl learner is orders of magnitude slower and thus excluded from the comparison.
In addition to single processing, both parallel processing methods
(threading and OpenMP) are included. Run the benchmark with python run_ndl.py, which
saves the wall-clock times in a CSV files.

def clock(func, args, **kwargs):
 gc.collect()
 start = time.time()
 result = func(*args, **kwargs)
 stop = time.time()
 duration = stop - start
 return result, duration
…
for r in range(repeats):
 for file_path in event_dir.glob('*.tab.gz'):
 _, duration_omp1 = clock(ndl.ndl, (file_path, ALPHA, BETAS, LAMBDA_), n_jobs=1, method='openmp')
 _, duration_omp4 = clock(ndl.ndl, (file_path, ALPHA, BETAS, LAMBDA_), n_jobs=4, method='openmp')
 …

Running R ndl and ndl2

The R [https://www.r-project.org/] benchmark includes the equilibrium learner of ndl and
the iterative learner of ndl2. R -f run_ndl.R runs the ndl2 on the same event files as pyndl,
while ndl only runs on the smaller files because it is orders of magnitude slower.

ndl can be installed from CRAN by running install.packages('ndl') in R, while ndl2 is just
available upon request (contact Konstantin Sering [https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/quantitative-linguistik/mitarbeiter/'], install with R CMD INSTALL ndl2.tar.gz).

Both ndl and ndl2 cannot handle compressed event files right away. For ndl, we
load the full event file into memory (included in time measurement), while ndl2 reads an uncompressed event
files.

…
for (r in 1:10) {
 file_path <- event_files[i]
 for (i in 1:n) {
 st_proc_time <- system.time({
 learner <- learnWeightsTabular(gsub("[.]gz$", "", file_path), alpha=0.1, beta=0.1, lambda=1.0, numThreads=1, useExistingFiles=FALSE)
 })
 mt_proc_time <- system.time({
 learner <- learnWeightsTabular(gsub("[.]gz$", "", file_path), alpha=0.1, beta=0.1, lambda=1.0, numThreads=4, useExistingFiles=FALSE)
 })
 …

 if (nrow(event_df) < 100000) {
 proc_time <- system.time({
 event_df <- read.delim(gzfile(file_path))
 output <- estimateWeights(cuesOutcomes=event_df)
 }, gcFirst = TRUE)
 }
 …
 }
 …
}

Results and discussion

We visualize the wall-clock time for the various NDL implementations and number of events as a line
plot with error bars for the standard-error within the ten repetitions (python plot_result.py, requires the plotting packages seaborn).
The shown wall-clock times were recorded on a laptop (Intel(R) Core(TM) i7-8565U CPU running Ubuntu 20.4, R 3.6 and python 3.9).

[image: _images/benchmark_result.png]
For small event files the pyndl are less than one second slower than ndl2 but still almost twenty times faster than ndl. With increasing number of events, pyndl becomes the fastest method
in both single and parallel processing (2 jobs).

pyndl processes the event file into a faster accessible format, which results
in the overhead for event files. This is similarly done in ndl2 where this
overhead for small event files seems to be less time consuming. However, in
contrast to the implementations in ndl2 and ndl, the implementation in
pyndl never reads the full event file into memory, which is faster and has a
smaller memory footprint than its competitors.

Tips & Tricks

This is collection of more or less unrelated tips and tricks that can be helpful
during development and maintanance.

Running pyndl within R code

In order to run pyndl within R code first install Python and pyndl
as described in the install instructions. Make sure pyndl runs for your
user within Python.

Now we can switch to R and install the reticulate package
(https://cran.r-project.org/web/packages/reticulate/vignettes/introduction.html)
After having the reticulate package installed we can run within R the following code:

library(reticulate)

learn_weights <- function(event_file) {
 py_env <- py_run_string(
 paste(
 "from pyndl import ndl",
 paste0("weights = ndl.ndl('", event_file, "', alpha=0.01, betas=(1.0, 1.0), remove_duplicates=True)"),
 "weight_matrix = weights.data",
 "outcome_names = weights.coords['outcomes'].values",
 "cue_names = weights.coords['cues'].values",
 sep = "\n"
),
 convert = FALSE
)
 wm <- py_to_r(py_env$weight_matrix)
 rownames(wm) <- py_to_r(py_env$outcome_names)
 colnames(wm) <- py_to_r(py_env$cue_names)
 py_run_string(
 paste(
 "del cue_names",
 "del outcome_names",
 "del weight_matrix",
 "del weights",
 sep = "\n"
),
 convert = FALSE
)
 wm
}

After having defined this funtion a gzipped tab seperated event file can be learned using:

wm <- learn_weights('event_file.tab.gz')

Note that this code needs at the moment slightly more than two times the size
of the weights matrix.

There might be a way to learn the weight matrix without any copying between R and Python, but this needs to be elaborated a bit further. The basic idea is

	to create the the matrix in R (in Fortran mode),

	borrow / make the matrix available in Python,

	transpose the matrix in Python to get it into C mode

	learn the weights in place,

	Check that the matrix in R has the weights learned as a side effect of the
Python code.

Further reading:

	https://cran.r-project.org/web/packages/reticulate/vignettes/introduction.html

	https://cran.r-project.org/web/packages/reticulate/vignettes/arrays.html

	https://stackoverflow.com/questions/44379525/r-reticulate-how-do-i-clear-a-python-object-from-memory

API Documentation

pyndl.activation

pyndl.activation provides the functionality to estimate activation of a
trained ndl model for given events. The trained ndl model is thereby
represented as the outcome-cue weights.

	
pyndl.activation.activation(events, weights, *, n_jobs=1, number_of_threads=None, remove_duplicates=None, ignore_missing_cues=False)

	Estimate activations for given events in event file and outcome-cue weights.

Memory overhead for multiprocessing is one copy of weights
plus a copy of cues for each thread.

	Parameters

	
	eventsgenerator or str
	generates cues, outcomes pairs or the path to the event file

	weightsxarray.DataArray or dict[dict[float]]
	the xarray.DataArray needs to have the dimensions ‘outcomes’ and ‘cues’
the dictionaries hold weight[outcome][cue].

	n_jobsint
	a integer giving the number of threads in which the job should
executed

	remove_duplicates{None, True, False}
	if None raise a ValueError when the same cue is present multiple times
in the same event; True make cues unique per event; False
keep multiple instances of the same cue (this is usually not
preferred!)

	ignore_missing_cues{True, False}
	if True function ignores cues which are in the test dataset but not in
the weight matrix
if False raises a KeyError for cues which are not in the weight matrix

	Returns

	
	activationsxarray.DataArray
	with dimensions ‘outcomes’ and ‘events’. Contains coords for the outcomes.
returned if weights is instance of xarray.DataArray

	or
	

	activationsdict of numpy.arrays
	the first dict has outcomes as keys and dicts as values
the list has a activation value per event
returned if weights is instance of dict

pyndl.corpus

pyndl.corpus generates a corpus file (outfile) out of a bunch of gunzipped xml
subtitle files in a directory and all its subdirectories.

	
class pyndl.corpus.JobParseGz(break_duration)

	Bases: object

Stores the persistent information over several jobs and exposes a job
method that only takes the varying parts as one argument.

Note

Using a closure is not possible as it is not pickable / serializable.

Methods

	run

	

	
run(filename)

	

	
pyndl.corpus.create_corpus_from_gz(directory, outfile, *, n_threads=1, verbose=False)

	Create a corpus file from a set of gunziped (.gz) files in a directory.

	Parameters

	
	directorystr
	use all gz-files in this directory and all subdirectories as input.

	outfilestr
	name of the outfile that will be created.

	n_threadsint
	number of threads to use.

	verbosebool
	

	
pyndl.corpus.read_clean_gzfile(gz_file_path, *, break_duration=2.0)

	Generator that opens and reads a gunzipped xml subtitle file, while all
xml tags and timestamps are removed.

	Parameters

	
	break_durationfloat
	defines the amount of time in seconds that need to pass between two
subtitles in order to start a new paragraph in the resulting corpus.

	Yields

	
	linenon empty, cleaned line out of the xml subtitle file
	

	Raises

	
	FileNotFoundErrorif file is not there.
	

	
pyndl.correlation.correlation(semantics, activations, *, verbose=False, allow_nan=False)

	calculates the correlations between the semantics and the activations.

	Returns

	
	np.array (n_outcomes, n_events)
	

	The first column contains all correlations between the first event and
	

	all possible outcomes in the semantcs.
	

	The first column reads like:
	

	
	correlation between first event and first outcome in the semantic
	(gold standard) space.

	
	correlation between first event and second outcome …
	

	…
	

pyndl.count

pyndl.count provides functions in order to count

	words and symbols in a corpus file

	cues and outcomes in an event file

	
class pyndl.count.CuesOutcomes(n_events, cues, outcomes)

	Bases: tuple

	Attributes

	
	cues
	Alias for field number 1

	n_events
	Alias for field number 0

	outcomes
	Alias for field number 2

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
cues

	Alias for field number 1

	
n_events

	Alias for field number 0

	
outcomes

	Alias for field number 2

	
class pyndl.count.WordsSymbols(words, symbols)

	Bases: tuple

	Attributes

	
	symbols
	Alias for field number 1

	words
	Alias for field number 0

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
symbols

	Alias for field number 1

	
words

	Alias for field number 0

	
pyndl.count.cues_outcomes(event_file_name, *, n_jobs=2, number_of_processes=None, verbose=False)

	Counts cues and outcomes in event_file_name using n_jobs
processes.

	Returns

	
	(n_events, cues, outcomes)(int, collections.Counter, collections.Counter)
	

	
pyndl.count.load_counter(filename)

	Loads a counter out of a tab delimitered text file.

	
pyndl.count.save_counter(counter, filename, *, header='key\tfreq\n')

	Saves a counter object into a tab delimitered text file.

	
pyndl.count.words_symbols(corpus_file_name, *, n_jobs=2, number_of_processes=None, lower_case=False, verbose=False)

	Counts words and symbols in corpus_file_name using n_jobs
processes.

	Returns

	
	(words, symbols)(collections.Counter, collections.Counter)
	

pyndl.io

pyndl.io provides functions to create event generators from different
sources in order to use them with pyndl.ndl to train NDL models or to save
existing events from a DataFrame or a list to a file.

	
pyndl.io.events_from_dataframe(df, columns=('cues', 'outcomes'))

	Yields events for all events in a pandas dataframe.

	Parameters

	
	dfpandas.DataFrame
	a pandas DataFrame with one event per row and one colum with the cues
and one column with the outcomes.

	columnstuple
	a tuple of column names

	Yields

	
	cues, outcomeslist, list
	a tuple of two lists containing cues and outcomes

	
pyndl.io.events_from_file(event_path, compression='gzip', start=0, step=1)

	Yields events for all events in a gzipped event file.

	Parameters

	
	event_pathstr
	path to gzipped event file

	compressionstr
	indicates whether the events should be read from gunzip
file or not can be {“gzip” or None}

	start: int
	first event to read

	step: int
	slice every step-th event (useful for parallel computations)

	Yields

	
	cues, outcomeslist, list
	a tuple of two lists containing cues and outcomes

	
pyndl.io.events_from_list(lst)

	Yields events for all events in a list.

	Parameters

	
	lstlist of list of str or list of str
	a list either containing a list of cues as strings and a list of outcomes
as strings or a list containing a cue and an outcome string, where cues
respectively outcomes are seperated by an undescore

	Yields

	
	cues, outcomeslist, list
	a tuple of two lists containing cues and outcomes

	
pyndl.io.events_to_file(events, file_path, delimiter='\t', compression='gzip', columns=('cues', 'outcomes'), compatible=False)

	Writes events to a file

	Parameters

	
	eventspandas.DataFrame or Iterator or Iterable
	a pandas DataFrame with one event per row and one colum with the cues
and one column with the outcomes or a list of cues and outcomes as strings
or a list of a list of cues and a list of outcomes which should be written
to a file

	file_path: str
	path to where the file should be saved

	delimiter: str
	Seperator which should be used. Default ist a tab

	compressionstr
	indicates whether the events should be read from gunzip
file or not can be {“gzip” or None}

	columns: tuple
	a tuple of column names

	compatible: bool
	if true add a third frequency column (all ones) for compatibility with ndl2

	
pyndl.io.safe_write_path(path, template='{path.stem}-{counter}{path.suffix}')

	Create a file path to avoid overwriting existing files.
Returns the original path if it does not exist or
an incremented version according to the template.

This function with the default template creates filenames like
pathname/example.png, pathname/example-1.png, pathname/example-2.png, …

	Parameters

	
	path: file path
	

	template: format string syntax of incremented file name.
	available variables are counter (int) and path (pathlib.Path).

	Returns

	
	path: the input path or (if file exists) the path with incremented filename.
	

pyndl.ndl

pyndl.ndl provides functions in order to train NDL models

	
class pyndl.ndl.WeightDict(*args, **kwargs)

	Bases: defaultdict

Subclass of defaultdict to represent outcome-cue weights.

Notes

Weight for each outcome-cue combination is 0 per default.

	Attributes

	
	attrs
	

	default_factory
	Factory for default value called by __missing__().

Methods

	clear()

	

	copy()

	

	fromkeys(iterable[, value])

	Create a new dictionary with keys from iterable and values set to value.

	get(key[, default])

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(key[, default])

	If key is not found, default is returned if given, otherwise KeyError is raised

	popitem(/)

	Remove and return a (key, value) pair as a 2-tuple.

	setdefault(key[, default])

	Insert key with a value of default if key is not in the dictionary.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

	
property attrs

	

	
pyndl.ndl.data_array(weights, *, attrs=None)

	Calculate the weights for all_outcomes over all events in event_file.

	Parameters

	
	weightsdict of dicts of floats or WeightDict
	the first dict has outcomes as keys and dicts as values
the second dict has cues as keys and weights as values
weights[outcome][cue] gives the weight between outcome and cue.
If a dict of dicts is given, attrs is required. If a WeightDict is
given, attrs is optional

	attrsdict
	A dictionary of attributes

	Returns

	
	weightsxarray.DataArray
	with dimensions ‘outcomes’ and ‘cues’. You can lookup the weights
between a cue and an outcome with weights.loc[{'outcomes': outcome,
'cues': cue}] or weights.loc[outcome].loc[cue].

	
pyndl.ndl.dict_ndl(events, alphas, betas, lambda_=1.0, *, weights=None, inplace=False, remove_duplicates=None, make_data_array=False, verbose=False)

	Calculate the weights for all_outcomes over all events in event_file.

This is a pure python implementation using dicts.

	Parameters

	
	eventsgenerator or str
	generates cues, outcomes pairs or the path to the event file

	alphasdict or float
	a (default)dict having cues as keys and a value below 1 as value

	betas(float, float)
	one value for successful prediction (reward) one for punishment

	lambda_float
	

	weightsdict of dicts or xarray.DataArray or None
	initial weights

	inplace: {True, False}
	if True calculates the weightmatrix inplace
if False creates a new weightmatrix to learn on

	remove_duplicates{None, True, False}
	if None though a ValueError when the same cue is present multiple times
in the same event; True make cues and outcomes unique per event; False
keep multiple instances of the same cue or outcome (this is usually not
preferred!)

	make_data_array{False, True}
	if True makes a xarray.DataArray out of the dict of dicts.

	verbosebool
	print some output if True.

	Returns

	
	weightsdict of dicts of floats
	the first dict has outcomes as keys and dicts as values
the second dict has cues as keys and weights as values
weights[outcome][cue] gives the weight between outcome and cue.

	or
	

	weightsxarray.DataArray
	with dimensions ‘outcomes’ and ‘cues’. You can lookup the weights
between a cue and an outcome with weights.loc[{'outcomes': outcome,
'cues': cue}] or weights.loc[outcome].loc[cue].

Notes

The metadata will only be stored when make_data_array is True and then
dict_ndl cannot be used to continue learning. At the moment there is no
proper way to automatically store the meta data into the default dict.

	
pyndl.ndl.ndl(events, alpha, betas, lambda_=1.0, *, method='openmp', weights=None, number_of_threads=None, n_jobs=8, len_sublists=None, n_outcomes_per_job=10, remove_duplicates=None, verbose=False, temporary_directory=None, events_per_temporary_file=10000000)

	Calculate the weights for all_outcomes over all events in event_file
given by the files path.

This is a parallel python implementation using numpy, multithreading and
the binary format defined in preprocess.py.

	Parameters

	
	eventsgenerator or str
	generates cues, outcomes pairs or the path to the event file

	alphafloat
	saliency of all cues

	betas(float, float)
	one value for successful prediction (reward) one for punishment

	lambda_float
	

	method{‘openmp’, ‘threading’}
	

	weightsNone or xarray.DataArray
	the xarray.DataArray needs to have the named dimensions ‘cues’ and ‘outcomes’

	n_jobsint
	a integer giving the number of threads in which the job should
executed

	n_outcomes_per_jobint
	a integer giving the length of sublists generated from all outcomes

	remove_duplicates{None, True, False}
	if None though a ValueError when the same cue is present multiple times
in the same event; True make cues and outcomes unique per event; False
keep multiple instances of the same cue or outcome (this is usually not
preferred!)

	verbosebool
	print some output if True.

	temporary_directorystr
	path to directory to use for storing temporary files created;
if none is provided, the operating system’s default will
be used (/tmp on unix)

	events_per_temporary_file: int
	Number of events in each temporary binary file. Has to be larger than 1

	Returns

	
	weightsxarray.DataArray
	with dimensions ‘outcomes’ and ‘cues’. You can lookup the weights
between a cue and an outcome with weights.loc[{'outcomes': outcome,
'cues': cue}] or weights.loc[outcome].loc[cue].

	
pyndl.ndl.slice_list(list_, len_sublists)

	Slices a list in sublists with the length len_sublists.

	Parameters

	
	list_list
	list which should be sliced in sublists

	len_sublistsint
	integer which determines the length of the sublists

	Returns

	
	seq_listlist of lists
	a list of sublists with the length len_sublists

pyndl.preprocess

pyndl.preprocess provides functions in order to preprocess data and create
event files from it.

	
class pyndl.preprocess.JobFilter(keep_cues, keep_outcomes, remove_cues, remove_outcomes, cue_map, outcome_map)

	Bases: object

Stores the persistent information over several jobs and exposes a job
method that only takes the varying parts as one argument.

Note

Using a closure is not possible as it is not pickable / serializable.

Methods

	job

	

	process_cues

	

	process_cues_all

	

	process_cues_keep

	

	process_cues_map

	

	process_cues_remove

	

	process_outcomes

	

	process_outcomes_all

	

	process_outcomes_keep

	

	process_outcomes_map

	

	process_outcomes_remove

	

	return_empty_string

	

	
job(line)

	

	
process_cues(cues)

	

	
process_cues_all(cues)

	

	
process_cues_keep(cues)

	

	
process_cues_map(cues)

	

	
process_cues_remove(cues)

	

	
process_outcomes(outcomes)

	

	
process_outcomes_all(outcomes)

	

	
process_outcomes_keep(outcomes)

	

	
process_outcomes_map(outcomes)

	

	
process_outcomes_remove(outcomes)

	

	
static return_empty_string()

	

	
pyndl.preprocess.bandsample(population, sample_size=50000, *, cutoff=5, seed=None, verbose=False)

	Creates a sample of size sample_size out of the population using
band sampling.

	
pyndl.preprocess.create_binary_event_files(event_file, path_name, cue_id_map, outcome_id_map, *, sort_within_event=False, n_jobs=2, events_per_file=10000000, overwrite=False, remove_duplicates=None, verbose=False)

	Creates the binary event files for a tabular cue outcome corpus.

	Parameters

	
	event_filestr
	path to tab separated text file that contains all events in a cue
outcome table.

	path_namestr
	folder name where to store the binary event files

	cue_id_mapdict (str -> int)
	cue to id map

	outcome_id_mapdict (str -> int)
	outcome to id map

	sort_within_eventbool
	should we sort the cues and outcomes within the event

	n_jobsint
	number of threads to use

	events_per_fileint
	Number of events in each binary file. Has to be larger than 1

	overwritebool
	overwrite files if they exist

	remove_duplicates{None, True, False}
	if None though a ValueError when the same cue is present multiple times
in the same event; True make cues and outcomes unique per event; False
keep multiple instances of the same cue or outcome (this is usually not
preferred!)

	verbosebool
	

	Returns

	
	number_eventsint
	sum of number of events written to binary files

	
pyndl.preprocess.create_event_file(corpus_file, event_file, *, allowed_symbols='*', context_structure='document', event_structure='consecutive_words', event_options=(3,), cue_structure='trigrams_to_word', lower_case=False, remove_duplicates=True, verbose=False)

	Create an text based event file from a corpus file.

Warning

‘_’, ‘#’, and ‘ ‘ are removed from the input of the corpus file and
replaced by a ‘ ‘, which is treated as a word boundary.

	Parameters

	
	corpus_filestr
	path where the corpus file is

	event_filestr
	path where the output file will be created

	allowed_symbolsstr, function
	all allowed symbols to include in the events as a set of characters.
The set of characters might be explicit or contains Regex character sets.

‘_’, ‘#’, and TAB are special symbols in the event file and will be removed
automatically. If the corpus file contains these special symbols a warning
will be given.

These examples define the same allowed symbols:

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
'a-zA-Z'
'*'

or a function indicating which characters to include. The function should
return True, if the passed character is a allowed symbol.

For example:

lambda chr: chr in "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
lambda chr: ('a' <= chr <= 'z') or ('A' <= chr <= 'Z')

	context_structure{“document”, “paragraph”, “line”}
	

	event_structure{“line”, “consecutive_words”, “word_to_word”, “sentence”}
	

	event_optionsNone or (number_of_words,) or (before, after) or None
	in “consecutive words” the number of words of the sliding window as
an integer; in “word_to_word” the number of words before and after the
word of interest each as an integer.

	cue_structure: {“trigrams_to_word”, “word_to_word”, “bigrams_to_word”}
	

	lower_casebool
	should the cues and outcomes be lower cased

	remove_duplicatesbool
	create unique cues and outcomes per event

	verbosebool
	

Notes

Breaks / Separators :

What marks parts, where we do not want to continue learning?

	---end.of.document--- string?

	line breaks?

	empty lines?

What do we consider one event?

	three consecutive words?

	one line of the corpus?

	everything between two empty lines?

	everything within one document?

Should the events be connected to the events before and after?

No.

Context :

A context is a whole document or a paragraph within which we will take
(three) consecutive words as occurrences or events. The last words of a
context will not form an occurrence with the first words of the next
context.

Occurrence :

An occurrence or event is will result in one event in the end. This can
be (three) consecutive words, a sentence, or a line in the corpus file.

	
pyndl.preprocess.event_generator(event_file, cue_id_map, outcome_id_map, *, sort_within_event=False)

	

	
pyndl.preprocess.filter_event_file(input_event_file, output_event_file, *, keep_cues='all', keep_outcomes='all', remove_cues=None, remove_outcomes=None, cue_map=None, outcome_map=None, n_jobs=1, number_of_processes=None, chunksize=100000, verbose=False)

	Filter an event file by a list or a map of cues and outcomes.

	Parameters

	
	You can either use keep_*, remove_*, or map_*.
	

	input_event_filestr
	path where the input event file is

	output_event_filestr
	path where the output file will be created

	keep_cues“all” or sequence of str
	list of all cues that should be kept

	keep_outcomes“all” or sequence of str
	list of all outcomes that should be kept

	remove_cuesNone or sequence of str
	list of all cues that should be removed

	remove_outcomesNone or sequence of str
	list of all outcomes that should be removed

	cue_mapdict
	maps every cue as key to the value. Removes all cues that do not have a
key. This can be used to map several different cues to the same cue or
to rename cues.

	outcome_mapdict
	maps every outcome as key to the value. Removes all outcome that do not have a
key. This can be used to map several different outcomes to the same
outcome or to rename outcomes.

	n_jobsint
	number of threads to use

	chunksizeint
	number of chunks per submitted job, should be around 100000

Notes

It will keep all cues that are within the event and that (for a human
reader) might clearly belong to a removed outcome. This is on purpose and
is the expected behaviour as these cues are in the context of this outcome.

If an event has no cues it gets removed, but if an event has no outcomes it
is still present in order to capture the background rate of that cues.

	
pyndl.preprocess.ngrams_to_word(occurrences, n_chars, outfile, remove_duplicates=True)

	Process the occurrences and write them to outfile.

	Parameters

	
	occurrencessequence of (cues, outcomes) tuples
	cues and outcomes are both strings where underscores and # are
special symbols.

	n_charsnumber of characters (e.g. 2 for bigrams, 3 for trigrams, …)
	

	outfilefile handle
	

	remove_duplicatesbool
	if True make cues and outcomes per event unique

	
pyndl.preprocess.process_occurrences(occurrences, outfile, *, cue_structure='trigrams_to_word', remove_duplicates=True)

	Process the occurrences and write them to outfile.

	Parameters

	
	occurrencessequence of (cues, outcomes) tuples
	cues and outcomes are both strings where underscores and # are
special symbols.

	outfilefile handle
	

	cue_structure{‘bigrams_to_word’, ‘trigrams_to_word’, ‘word_to_word’}
	

	remove_duplicatesbool
	if True make cues and outcomes per event unique

	
pyndl.preprocess.read_binary_file(binary_file_path)

	

	
pyndl.preprocess.to_bytes(int_)

	

	
pyndl.preprocess.to_integer(byte_)

	

	
pyndl.preprocess.write_events(events, filename, *, start=0, stop=4294967295, remove_duplicates=None)

	Write out a list of events to a disk file in binary format.

	Parameters

	
	eventsiterator of (cue_ids, outcome_ids) tuples called event
	

	filenamestring
	

	startfirst event to write (zero based index)
	

	stoplast event to write (zero based index; excluded)
	

	remove_duplicates{None, True, False}
	if None though a ValueError when the same cue is present multiple times
in the same event; True make cues and outcomes unique per event; False
keep multiple instances of the same cue or outcome (this is usually not
preferred!)

	Returns

	
	number_eventsint
	actual number of events written to file

	Raises

	
	StopIterationevents generator is exhausted before stop is reached
	

Notes

The binary format as the following structure:

8 byte header
nr of events
nr of cues in first event
ids for every cue
nr of outcomes in first event
ids for every outcome
nr of cues in second event
...

pyndl.wh

pyndl.wh provides functions in order to train Widrow-Hoff (WH) models. In contrast
to the Rescorla-Wagner (RW) models, the WH models can not only have binary
cues and outcomes, but can encode gradual intensities in the cues and outcomes.
This is done by associating a vector of continues values (real numbers) to each
cue and outcome. The size of the vector has to be the same for all cues and for
all outcomes, but can differ between cues and outcomes.

It is possible to calculate weights for continuous cues or continues outcomes,
while keeping the outcomes respectively cues binary. Finally, it is possible to
have both sides, cues and outcomes, to be continues and calculate the
Widrow-Hoff learning rule between them.

	
pyndl.wh.dict_wh(events, eta, cue_vectors, outcome_vectors, *, weights=None, inplace=False, remove_duplicates=None, make_data_array=False, verbose=False)

	Calculate the weights for all_outcomes over all events in events.

This is a pure python implementation using dicts.

	Parameters

	
	eventsgenerator or str
	generates cues, outcomes pairs or the path to the event file

	etafloat
	learning rate

	cue_vectorsxarray.DataArray
	matrix that contains the cue vectors for each cue

	outcome_vectorsxarray.DataArray
	matrix that contains the target vectors for each outcome

	weightsdict of dicts or xarray.DataArray or None
	initial weights

	inplace: {True, False}
	if True calculates the weightmatrix inplace
if False creates a new weightmatrix to learn on

	remove_duplicates{None, True, False}
	if None though a ValueError when the same cue is present multiple times
in the same event; True make cues and outcomes unique per event; False
keep multiple instances of the same cue or outcome (this is usually not
preferred!)

	make_data_array{False, True}
	if True makes a xarray.DataArray out of the dict of dicts.

	verbosebool
	print some output if True.

	Returns

	
	weightsdict of dicts of floats
	the first dict has outcomes as keys and dicts as values
the second dict has cues as keys and weights as values
weights[outcome][cue] gives the weight between outcome and cue.

	or
	

	weightsxarray.DataArray
	with dimensions ‘outcome_vector_dimensions’ and
‘cue_vector_dimensions’. You can lookup the weights
between a cue dimension and an outcome dimension with
weights.loc[{'outcome_vector_dimensions': outcome_vector_dimension,
'cue_vector_dimensions': cue_vector_dimension}] or
weights.loc[outcome_vector_dimension].loc[cue_vector_dimension].

Notes

The metadata will only be stored when make_data_array is True and then
dict_ndl cannot be used to continue learning. At the moment there is no
proper way to automatically store the meta data into the default dict.

Furthermore, this implementation only supports the ‘real to real’ case
where cue vectors are learned on outcome vectors. For the ‘binary to real’
or ‘real to binary’ cases the wh.wh function needs to be used which uses
a fast cython implementation.

The main purpose of this function is to have a reference implementation
which is used to validate the faster cython version against. Additionally, this
function can be a good starting point to develop different flavors of the
Widrow-Hoff learning rule.

	
pyndl.wh.wh(events, eta, *, cue_vectors=None, outcome_vectors=None, method='openmp', weights=None, n_jobs=8, n_outcomes_per_job=10, remove_duplicates=None, verbose=False, temporary_directory=None, events_per_temporary_file=10000000)

	Calculate the weights for all events using the Widrow-Hoff learning rule in
three different flavors.

In the first flavor, cues and outcomes both are vectors and the names in
the eventfiles refer to these vectors. The vectors for all cues and
outcomes are given as an xarray.DataArray with the arguments cue_vectors
and `outcome_vectors’.

In the second and third flavor, only the cues or only the outcomes are
treated as vectors and the ones not being treated as vectors are still
considered being present or not being present in a binary way.

This is a parallel python implementation using cython, numpy,
multithreading and the binary format defined in preprocess.py.

	Parameters

	
	eventsstr
	path to the event file

	etafloat
	learning rate

	cue_vectorsxarray.DataArray
	matrix that contains the cue vectors for each cue

	outcome_vectorsxarray.DataArray
	matrix that contains the target vectors for each outcome

	method{‘openmp’, ‘threading’, ‘numpy’}
	‘numpy’ works only for real to real Widrow-Hoff.

	weightsNone or xarray.DataArray
	the xarray.DataArray needs to have the named dimensions ‘cues’ or
‘cue_vector_dimensions’ and ‘outcomes’ or ‘outcome_vector_dimensions’

	n_jobsint
	an integer giving the number of threads in which the job should be
executed

	n_outcomes_per_jobint
	an integer giving the number of outcomes that are processed in one job

	remove_duplicates{None, True, False}
	if None raise a ValueError when the same cue is present multiple times
in the same event; True make cues and outcomes unique per event; False
keep multiple instances of the same cue or outcome (this is usually not
preferred!)

	verbosebool
	print some output if True

	temporary_directorystr
	path to directory to use for storing temporary files created;
if none is provided, the operating system’s default will
be used like ‘/tmp’ on unix

	events_per_temporary_file: int
	Number of events in each temporary binary file. Has to be larger than 1

	Returns

	
	weightsxarray.DataArray
	the dimensions of the weights reflect the type of Widrow-Hoff that was
run (real to real, binary to real, real to binary or binary to binary).
The dimension names reflect this in the weights. They are a combination
of ‘outcomes’ x ‘outcome_vector_dimensions’ and ‘cues’ x
‘cue_vector_dimensions’ with dimensions ‘outcome_vector dimensions’ and
‘cue_vector_dimensions’. You can lookup the weights between a vector
dimension and a cue with weights.loc[{'outcome_vector_dimensions':
outcome_vector_dimension, 'cue_vector_dimensions':
cue_vector_dimension}] or
weights.loc[vector_dimension].loc[cue_vector_dimension].

Development

[image: _images/badge.svg]
 [https://github.com/quantling/pyndl/actions/workflows/python-test.yml][image: _images/badge1.svg]
 [https://codecov.io/gh/quantling/pyndl][image: _images/pyndl.svg]
 [https://lgtm.com/projects/g/quantling/pyndl/context:python][image: _images/pyndl1.svg]
 [https://github.com/quantling/pyndl/issues][image: _images/pyndl2.svg]
 [https://github.com/quantling/pyndl/pulls]
Getting Involved

The pyndl project welcomes help in the following ways:

	Making Pull Requests for
code [https://github.com/quantling/pyndl/tree/main/pyndl],
tests [https://github.com/quantling/pyndl/tree/main/tests]
or documentation [https://github.com/quantling/pyndl/tree/main/doc].

	Commenting on open issues [https://github.com/quantling/pyndl/issues]
and pull requests [https://github.com/quantling/pyndl/pulls].

	Helping to answer questions in the issue section [https://github.com/quantling/pyndl/labels/question].

	Creating feature requests or adding bug reports in the issue section [https://github.com/quantling/pyndl/issues/new].

Prerequisites

To make changes to the pyndl code base the following prerequisites need to be
fulfilled on your machine:

	you have Python3 installed

	you have Cython [https://cython.readthedocs.io] installed and can compile
Cython extensions (conda install cython should do the trick, but sometimes
this can be a little bit tricky)

	you have poetry [https://python-poetry.org/] installed

	you have git installed

Note

Depending on your operating system and your architecture properly installing
Cython and being able to compile Cython extensions can be a bit tricky. If
the installation of python fails, it is a good first step to check that the
Cython installation is done properly via conda or through you package
manager.

Workflow

	Fork this repository on Github. From here on we assume you successfully
forked this repository to https://github.com/yourname/pyndl.git

	Install all dependencies with poetry (https://python-poetry.org/)

git clone https://github.com/yourname/pyndl.git
cd pyndl
poetry install

	Add code, tests or documentation.

	Test your changes locally by running within the root folder (pyndl/)

poetry run pytest
poetry run pylint pyndl

	Add and commit your changes after tests run through without complaints.

git add -u
git commit -m 'fixes #42 by posing the question in the right way'

You can reference relevant issues in commit messages (like #42) to make GitHub
link issues and commits together, and with phrase like “fixes #42” you can
even close relevant issues automatically.

	Push your local changes to your fork:

git push git@github.com:yourname/pyndl.git

	Open the Pull Requests page at https://github.com/yourname/pyndl/pulls and
click “New pull request” to submit your Pull Request to
https://github.com/quantling/pyndl.

Running tests

We use poetry to manage testing. You can run the tests by
executing the following within the repository’s root folder (pyndl/):

poetry run pytest

For extensive, time and memory consuming tests run (at least 12 GB of free
memory should be available):

poetry run pytest --run-slow

For manually checking coding guidelines run:

poetry run pylint pyndl

The linting gives still a lot of complaints that need some decisions on how to
fix them appropriately.

Note

Previous versions of pyndl used make and tox to manage testing. For
documentation on this, please check the respective version documentations

Local testing with conda

Sometimes it might be useful to test if pyndl works in a clean python
environment. Besides poetry this is possible with conda as well. The
commands are as follows:

conda create -n testpyndl
conda activate testpyndl
conda install python
python -c 'from pyndl import ndl; print("success")' # this should fail
git clone https://github.com/quantling/pyndl.git
pip install pyndl
python -c 'from pyndl import ndl; print("success")' # this should succeed
conda deactivate
conda env remove -n testpyndl

Memory profiling

Sometimes it is useful to monitory the memory footprint of the python process.
This can be achieved by using memory_profiler
(https://pypi.python.org/pypi/memory_profiler).

CPU profiling of C extensions

In order to profile Cython or C extensions that are invoked from python yep
is a good tool to do that. yep builds ontop of google-perftools.
(https://pypi.org/project/yep/)

Keeping a fork in sync with main

Note

If you have questions regarding git it is mostly a good start to read
up on it on github help pages, i. e.
https://help.github.com/articles/working-with-forks/ .

If you fork the pyndl project on github.com you might want to keep it in
sync with main. In order to do so, you need to setup a remote repository
within a local pyndl clone of you fork. This remote repository will point
to the original pyndl repository and is usually called upstream. In
order to do so run with a Terminal within the cloned pyndl folder:

git remote add upstream https://github.com/quantling/pyndl.git

After having set up the upstream repository you can manually sync your
local repository by running:

git fetch upstream

In order to sync you main branch run:

git checkout main
git merge upstream/main

If the merge cannot be fast-forward, you should resolve any issue now and
commit the manually merged files.

After that you should sync you local repository with you github fork by
running:

git push

Some sources with more explanation:

	https://help.github.com/articles/configuring-a-remote-for-a-fork/

	https://help.github.com/articles/syncing-a-fork/

Building documentation

Building the documentation requires some extra dependencies. Usually, these are
installed when installing the dependencies with poetry. Some services like Readthedocs,
however, require the documentation dependencies extra. For that reason, they can
also be found in docs/requirements.txt. For normal usage, installing all dependencies
with poetry is sufficient.

The projects documentation is stored in the pyndl/docs/ folder
and is created with sphinx. However, it is not necessary to build the documentation
from there.

You can rebuild the documentation by either executing

poetry run sphinx-build -b html docs/source docs/build/html

in the repository’s root folder (pyndl) or by executing

poetry run make html

in the documentation folder (pyndl/docs/).

Continuous Integration

We use several services in order to continuously monitor our project:

	Service

	Status

	Config file

	Description

	Github Actions

	[image: actions] [https://github.com/quantling/pyndl/actions/workflows/python-test.yml]

	python-test.yml [https://github.com/quantling/pyndl/blob/main/.github/workflows/python-test.yml]

	Automated testing

	Codecov

	[image: codecov] [https://codecov.io/gh/quantling/pyndl]

	
	Monitoring of test coverage

	LGTM

	[image: lgtm] [https://lgtm.com/projects/g/quantling/pyndl/context:python]

	
	Monitoring code quality

Licensing

All contributions to this project are licensed under the MIT license [https://github.com/quantling/pyndl/blob/main/LICENSE.txt]. Exceptions are
explicitly marked.
All contributions will be made available under MIT license if no explicit
request for another license is made and agreed on.

Release Process

	Update the version accordingly to Versioning below. This can be easily done
by poetry running

poetry version major|minor|patch|...

	Merge Pull Requests with new features or bugfixes into pyndl’s’ main
branch.

	Create a new release on Github of the main branch of the form vX.Y.Z
(where X, Y, and Z refer to the new version). Add a description
of the new feature or bugfix. For details on the version number see
Versioning below. This will trigger a Action to automatically build and
upload the release to PyPI

	Check if the new version is on pypi (https://pypi.python.org/pypi/pyndl/).

Versioning

We use a semvers versioning scheme. Assuming the current version is X.Y.Z
than X refers to the major version, Y refers to the minor version and
Z refers to a bugfix version.

Bugfix release

For a bugfix only merge, which does not add any new features and does not
break any existing API increase the bugfix version by one (X.Y.Z ->
X.Y.Z+1).

Minor release

If a merge adds new features or breaks with the existing API a deprecation
warning has to be supplied which should keep the existing API. The minor
version is increased by one (X.Y.Z -> X.Y+1.Z). Deprecation warnings should
be kept until the next major version. They should warn the user that the old
API is only usable in this major version and will not be available any more
with the next major X+1.0.0 release onwards. The deprecation warning should
give the exact version number when the API becomes unavailable and the way of
achieving the same behaviour.

Major release

If enough changes are accumulated to justify a new major release, create a new
pull request which only contains the following two changes:

	the change of the version number from X.Y.Z to X+1.0.0

	remove all the API with deprecation warning introduced in the current
X.Y.Z release

Credits

Authors

pyndl was mainly developed by
Konstantin Sering [https://github.com/derNarr],
Marc Weitz [https://github.com/trybnetic],
David-Elias Künstle [https://github.com/dekuenstle/],
Lennart Schneider [https://github.com/sumny] and
Elnaz Shafaei-Bajestan [https://github.com/elnazsh]. For the full list of
contributors have a look at Github’s Contributor summary [https://github.com/quantling/pyndl/contributors].

Currently, it is maintained by Konstantin Sering [https://github.com/derNarr]
and Marc Weitz [https://github.com/trybnetic].

Contact

In case you want to contact the project maintainers, please send an email to

konstantin [dot] sering [at] uni [minus] tuebingen [dot de

Citation

If this work was helpful in your work, feel free to cite it as

Konstantin Sering, Marc Weitz, David-Elias Künstle, Lennart Schneider, &
Elnaz Shafaei-Bajestan.
(2022). Pyndl: Naive discriminative learning in python.
http://doi.org/10.5281/zenodo.597964

If you are using BibTex you may want to use this example BibTex entry:

@misc{pyndl,
 author = {Konstantin Sering and
 Marc Weitz and
 David-Elias Künstle and
 Lennart Schneider and
 Elnaz Shafaei-Bajestan},
 title = {Pyndl: Naive discriminative learning in python},
 year = 2017,
 doi = {10.5281/zenodo.597964},
 url = {https://doi.org/10.5281/zenodo.597964}
}

Note

If you want to cite a specific version, check out the history on
zenodo [https://zenodo.org/search?page=1&size=20&q=conceptrecid:%22597964%22&sort=-version&all_versions=True]!

Funding

pyndl was partially funded by the Humboldt grant, the ERC advanced grant (no.
742545) and by the University of Tübingen.

Acknowledgements

This package is build as a python replacement for the R ndl2 package. Some
ideas on how to build the API and how to efficiently run the Rescorla Wagner
iterative learning on large text corpora are inspired by the way the ndl2
package solves this problems. The ndl2 package will be published to github soon
and a reference will be placed here.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyndl	

 	
 	
 pyndl.activation	

 	
 	
 pyndl.corpus	

 	
 	
 pyndl.correlation	

 	
 	
 pyndl.count	

 	
 	
 pyndl.io	

 	
 	
 pyndl.ndl	

 	
 	
 pyndl.preprocess	

 	
 	
 pyndl.wh	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	activation() (in module pyndl.activation)

 	
 	attrs (pyndl.ndl.WeightDict property)

B

 	
 	bandsample() (in module pyndl.preprocess)

C

 	
 	correlation() (in module pyndl.correlation)

 	create_binary_event_files() (in module pyndl.preprocess)

 	create_corpus_from_gz() (in module pyndl.corpus)

 	
 	create_event_file() (in module pyndl.preprocess)

 	cues (pyndl.count.CuesOutcomes attribute)

 	cues_outcomes() (in module pyndl.count)

 	CuesOutcomes (class in pyndl.count)

D

 	
 	data_array() (in module pyndl.ndl)

 	
 	dict_ndl() (in module pyndl.ndl)

 	dict_wh() (in module pyndl.wh)

E

 	
 	event_generator() (in module pyndl.preprocess)

 	events_from_dataframe() (in module pyndl.io)

 	
 	events_from_file() (in module pyndl.io)

 	events_from_list() (in module pyndl.io)

 	events_to_file() (in module pyndl.io)

F

 	
 	filter_event_file() (in module pyndl.preprocess)

J

 	
 	job() (pyndl.preprocess.JobFilter method)

 	
 	JobFilter (class in pyndl.preprocess)

 	JobParseGz (class in pyndl.corpus)

L

 	
 	load_counter() (in module pyndl.count)

M

 	
 	
 module

 	pyndl.activation

 	pyndl.corpus

 	pyndl.correlation

 	pyndl.count

 	pyndl.io

 	pyndl.ndl

 	pyndl.preprocess

 	pyndl.wh

N

 	
 	n_events (pyndl.count.CuesOutcomes attribute)

 	
 	ndl() (in module pyndl.ndl)

 	ngrams_to_word() (in module pyndl.preprocess)

O

 	
 	outcomes (pyndl.count.CuesOutcomes attribute)

P

 	
 	process_cues() (pyndl.preprocess.JobFilter method)

 	process_cues_all() (pyndl.preprocess.JobFilter method)

 	process_cues_keep() (pyndl.preprocess.JobFilter method)

 	process_cues_map() (pyndl.preprocess.JobFilter method)

 	process_cues_remove() (pyndl.preprocess.JobFilter method)

 	process_occurrences() (in module pyndl.preprocess)

 	process_outcomes() (pyndl.preprocess.JobFilter method)

 	process_outcomes_all() (pyndl.preprocess.JobFilter method)

 	process_outcomes_keep() (pyndl.preprocess.JobFilter method)

 	process_outcomes_map() (pyndl.preprocess.JobFilter method)

 	process_outcomes_remove() (pyndl.preprocess.JobFilter method)

 	
 pyndl.activation

 	module

 	
 	
 pyndl.corpus

 	module

 	
 pyndl.correlation

 	module

 	
 pyndl.count

 	module

 	
 pyndl.io

 	module

 	
 pyndl.ndl

 	module

 	
 pyndl.preprocess

 	module

 	
 pyndl.wh

 	module

R

 	
 	read_binary_file() (in module pyndl.preprocess)

 	read_clean_gzfile() (in module pyndl.corpus)

 	
 	return_empty_string() (pyndl.preprocess.JobFilter static method)

 	run() (pyndl.corpus.JobParseGz method)

S

 	
 	safe_write_path() (in module pyndl.io)

 	save_counter() (in module pyndl.count)

 	
 	slice_list() (in module pyndl.ndl)

 	symbols (pyndl.count.WordsSymbols attribute)

T

 	
 	to_bytes() (in module pyndl.preprocess)

 	
 	to_integer() (in module pyndl.preprocess)

W

 	
 	WeightDict (class in pyndl.ndl)

 	wh() (in module pyndl.wh)

 	words (pyndl.count.WordsSymbols attribute)

 	
 	words_symbols() (in module pyndl.count)

 	WordsSymbols (class in pyndl.count)

 	write_events() (in module pyndl.preprocess)

	Table 1

	Word

	Frequency

	Lexical Meaning

	Number

	hand

	10

	HAND

	

	hands

	20

	HAND

	PLURAL

	land

	8

	LAND

	

	lands

	3

	LAND

	PLURAL

	and

	35

	AND

	

	sad

	18

	SAD

	

	as

	35

	AS

	

	lad

	102

	LAD

	

	lads

	54

	LAD

	PLURAL

	lass

	134

	LASS

	

Quickstart

Installation

First, you need to install pyndl. The easiest way to do this is using
pip [https://pip.pypa.io/en/stable/]:

pip install --user pyndl

Warning

If you are using any other operating system than Linux this process can be
more difficult. Check out Installation for more detailed installation
instruction.
However, currently we can only ensure the expected behaviour on Linux
system. Be aware that on other operating system some functionality may not
work

Naive Discriminative Learning

Naive Discriminative Learning, henceforth NDL, is an incremental learning
algorithm based on the learning rule of Rescorla and Wagner 1, which
describes the learning of direct associations between cues and outcomes.
The learning is thereby structured in events where each event consists of a
set of cues which give hints to outcomes. Outcomes can be seen as the result of
an event, where each outcome can be either present or absent. NDL is naive in
the sense that cue-outcome associations are estimated separately for each
outcome.

The Rescorla-Wagner learning rule describes how the association strength
\(\Delta V_{i}^{t}\) at time \(t\) changes over time. Time is here
described in form of learning events. For each event the association strength
is updated as

\[V_{i}^{t+1} = V_{i}^{t} + \Delta V_{i}^{t}\]

Thereby, the change in association strength \(\Delta V_{i}^{t}\) is defined
as

\[\begin{split}\Delta V_{i}^{t} =
\begin{array}{ll}
\begin{cases}
\displaystyle 0 & \: \textrm{if ABSENT}(C_{i}, t)\\ \alpha_{i}\beta_{1} \:
(\lambda - \sum_{\textrm{PRESENT}(C_{j}, t)} \: V_{j}) & \:
\textrm{if PRESENT}(C_{j}, t) \: \& \: \textrm{PRESENT}(O, t)\\
\alpha_{i}\beta_{2} \: (0 - \sum_{\textrm{PRESENT}(C_{j}, t)} \: V_{j}) & \:
\textrm{if PRESENT}(C_{j}, t) \: \& \: \textrm{ABSENT}(O, t)
\end{cases}
\end{array}\end{split}\]

with

	\(\alpha_{i}\) being the salience of the cue \(i\)

	\(\beta_{1}\) being the salience of the situation in which the outcome
occurs

	\(\beta_{2}\) being the salience of the situation in which the outcome
does not occur

	\(\lambda\) being the the maximum level of associative strength possible

Note

Usually, the parameters are set to \(\alpha_{i} = \alpha_{j} \:
\forall i, j\), \(\beta_{1} = \beta_{2}\) and \(\lambda = 1\)

Usage

Analyzing data with pyndl involves three steps

	The data has to be preprocessed into the correct format

	One of the learning methods of pyndl is used to learn the desired associations

	The learned association (commonly also called weights) can be stored or directly
be analyzed further.

In the following, a usage example of pyndl is provided, in which the first two of the
three steps are described for learning the associations between bigrams and meanings. The
first section of this example focuses on the correct preparation of the data with inbuilt
methods. However, it is worth to note that the learning algorithm itself does not require
the data to be preprocessed by pyndl, nor it is limited by that. The
pyndl.preprocess module should rather be seen as a collection of established and
commonly used preprocessing methods within the context of NDL. Custom preprocessing can
be used as long as the created event files follow the structure as outlined in the next
section. The second section, describes how the associations can be learned using pyndl,
while the last section describes how this can be exported and, for instance, loaded in R
for further investigation.

Data Preparation

To analyse any data using pyndl requires them to be in the long format as an
utf-8 encoded tab delimited gzipped text file with a header in the first line
and two columns:

	the first column contains an underscore delimited list of all cues

	the second column contains an underscore delimited list of all outcomes

	each line therefore represents an event with a pair of a cue and an outcome
(occurring one time)

	the events (lines) are ordered chronologically

The algorithm itself is agnostic to the actual domain as long as the data is tokenized
as Unicode character strings. While pyndl provides some basic preprocessing for grapheme
tokenization (see for instance the following examples), the tokenization of ideograms,
pictograms, logograms, and speech has to be implemented manually. However, generic
implementations are welcome as a contribution.

Creating Grapheme Clusters From Wide Format Data

Often data which should be analysed is not in the right format to be processed
with pyndl. To illustrate how to get the data in the right format we use data
from Baayen, Milin, Đurđević, Hendrix & Marelli 2 as an example:

	Table 1

	Word

	Frequency

	Lexical Meaning

	Number

	hand

	10

	HAND

	

	hands

	20

	HAND

	PLURAL

	land

	8

	LAND

	

	lands

	3

	LAND

	PLURAL

	and

	35

	AND

	

	sad

	18

	SAD

	

	as

	35

	AS

	

	lad

	102

	LAD

	

	lads

	54

	LAD

	PLURAL

	lass

	134

	LASS

	

Table 1 shows some words, their frequencies of occurrence and their meanings as
an artificial lexicon in the wide format. In the following, the letters
(unigrams and bigrams) of the words constitute the cues, whereas the meanings
represent the outcomes.

As the data in table 1 are artificial we can generate such a file for this
example by expanding table 1 randomly regarding the frequency of occurrence of
each event. The resulting event file lexample.tab.gz [https://github.com/quantling/pyndl/blob/main/docs/data/lexample.tab.gz]
consists of 420 lines (419 = sum of frequencies + 1 header) and looks like the
following (nevertheless you are encouraged to take a closer look at this file
using any text editor of your choice):

	Cues

	Outcomes

	#h_ha_an_nd_ds_s#

	hand_plural

	#l_la_ad_d#

	lad

	#l_la_as_ss_s#

	lass

Creating Grapheme Clusters From Corpus Data

Often the corpus which should be analysed is only a raw utf-8 encoded text file
that contains huge amounts of text. From here on we will refer to such a file
as a corpus file. In the corpus files several documents can be stored with a
---end.of.document--- or ---END.OF.DOCUMENT--- string marking
where an old document finished and a new document starts.

The pyndl.preprocess module (besides other things)
provides the functionality to directly generate an event file based on a raw
corpus file and filter it:

>>> from pyndl import preprocess
>>> preprocess.create_event_file(corpus_file='docs/data/lcorpus.txt',
... event_file='docs/data/levent.tab.gz',
... allowed_symbols='a-zA-Z',
... context_structure='document',
... event_structure='consecutive_words',
... event_options=(1,),
... cue_structure='bigrams_to_word')

Here we use the example corpus lcorpus.txt [https://github.com/quantling/pyndl/blob/main/docs/data/lcorpus.txt] to
produce an event file levent.tab.gz which (uncompressed) looks like this:

	Cues

	Outcomes

	an_#h_ha_d#_nd

	hand

	ot_fo_oo_#f_t#

	foot

	ds_s#_an_#h_ha_nd

	hands

Note

pyndl.corpus allows you to generate such a corpus file from a
bunch of gunzipped xml subtitle files filled with words.

Learn the associations

The strength of the associations for the data can now easily be computed using
the pyndl.ndl.ndl function from the pyndl.ndl module:

>>> from pyndl import ndl
>>> weights = ndl.ndl(events='docs/data/levent.tab.gz',
... alpha=0.1, betas=(0.1, 0.1), method="threading")

Save and load a weight matrix

To save time in the future, we recommend saving the weights. For compatibility
reasons we recommend saving the weight matrix in the netCDF format 3:

>>> weights.to_netcdf('docs/data/weights.nc')

Now, the saved weights can later be reused or be analysed in Python or R. In
Python the weights can simply be loaded with the xarray module [http://xarray.pydata.org/en/stable/]:

>>> import xarray
>>> with xarray.open_dataarray('docs/data/weights.nc') as weights_read:
... weights_read

In R you need the ncdf4 package [https://cran.r-project.org/package=ncdf4]
to load a in netCDF format saved matrix:

> #install.packages("ncdf4") # uncomment to install
> library(ncdf4)
> weights_nc <- nc_open(filename = "docs/data/weights.nc")
> weights_read <- t(as.matrix(ncvar_get(nc = weights_nc, varid = "__xarray_dataarray_variable__")))
> rownames(weights_read) <- ncvar_get(nc = weights_nc, varid = "outcomes")
> colnames(weights_read) <- ncvar_get(nc = weights_nc, varid = "cues")
> nc_close(nc = weights_nc)
> rm(weights_nc)

Clean up

In order to keep everything clean we might want to remove all the files we
created in this tutorial:

>>> import os
>>> os.remove('docs/data/levent.tab.gz')

	1

	Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforcement and
non-reinforcement. Classical conditioning II: Current research and
theory, 2, 64-99.

	2

	Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M.
(2011). An amorphous model for morphological processing in visual
comprehension based on naive discriminative learning.
Psychological review, 118(3), 438.

	3

	Unidata (2012). NetCDF. doi:10.5065/D6H70CW6. Retrieved from
http://doi.org/10.5065/D6RN35XM)

 _images/benchmark_result.png
clock time [sec]

H

single processing

Parallel processing (2 jobs)

—

——
-

ndl

ndi2

pyndl (ours, openMP)
pyndl (ours, threading)

T T
100000 200000
events

T
300000

T
0

T T
100000 200000
events

T
300000

nav.xhtml

 Table of Contents

 		
 Pyndl - Naive Discriminative Learning in Python

_static/file.png

_static/benchmark_result.png
clock time [sec]

H

single processing

Parallel processing (2 jobs)

—

——
-

ndl

ndi2

pyndl (ours, openMP)
pyndl (ours, threading)

T T
100000 200000
events

T
300000

T
0

T T
100000 200000
events

T
300000

_static/minus.png

_static/plus.png

